Uplink multi-user MAC protocol for 11ax

Date: 2014-05-11

Authors:

Name	Affiliations	Address	Phone	Email
Tran Thi Thao Nguyen	Kyushu Institute of Technology	〒820-8502 Kawazu 680-4, Iizuka City, Fukuoka Japan	+81-948-29-7692	nguyen@dsp.cse.kyutech.ac.jp
Leonardo Lanante	Kyushu Institute of Technology	〒820-8502 Kawazu 680-4, Iizuka City, Fukuoka Japan	+81-948-29-7692	leonardo@dsp.cse.kyutech.ac.jp
Hiroshi Ochi	Kyushu Institute of Technology	〒820-8502 Kawazu 680-4, Iizuka City, Fukuoka Japan	+81-948-29-7692	ochi@cse.kyutech.ac.jp
Tatsumi Uwai	Radrix co.ltd	〒820-8502 Incubation Facilities, Kawazu 680-4, Iizuka City, Fukuoka Japan	+81-948-29-7937	uwai@radrix.com
Yuhei Nagao	Radrix co.ltd	〒820-8502 Incubation Facilities, Kawazu 680-4, Iizuka City, Fukuoka Japan	+81-948-29-7937	nagao@radrix.com

Abstract

- The support for Uplink multi-user (UL MU) for 802.11ax is currently unclear.
- However, numerous studies have shown the benefit UL MU schemes in high-density environments.
- This presentation aims to start the discussion to formally support UL MU in 802.11ax.
- We also present a simple UL MU MAC Protocol to support our objective.

Background

• In a highly dense Wireless LAN environment, many collisions occur reducing the total network throughput and possibly lead to congestive collapse.

Figure 1: Multi-user transmit their data to AP at the same time[1]

Background

• Uplink Multi-user transmission reduces collision and hence the total throughput by allowing multiple transmission in a single TXOP. Multi-user transmission can be done in the frequency or spatial domain.

- This figure is the result of combination of the OFDMA access and a CSMA scheme to improve efficiency.
- By adjusting the number of sub-channels, as the number of stations grows → maintain a higher throughput than CSMA/CA based schemes.

M: Number of subchannels Hybrid: OFDMA/CSMA

Figure 2: Benefit of UL MU (OFDMA) in frequency domain [2]

Uplink Multi-user Transmission

Definition

• Users transmit their data to an AP at the same time. [3]

Туре	Application
Frequency Domain Multiplexing (FDM)	• OFDMA in a channel or in multiple channels such as LTE or WiMAX
Spatial Domain Multiplexing (SDM)	• UL MU MIMO such as LTE
Code Domain Multiplexing (CDM)	 UL feedback in cellular network such as 3G cellular E.g. IDMA, CDMA
Hybrid Multiplexing	• E.g. Multicarrier-CDMA, OFDM- IDMA

Type of uplink multi-user transmission

UL MU MAC Protocol

• The benefit of UL MU can be easily demonstrated by the figure below

• However, the benefit of this scenario is limited because it is highly dependent on the transmitted DL frame.

UL MU MAC Protocol for general case

- Many UL MU MAC protocol in literature follows this protocol [2][3]
- In this protocol, the sequence is initiated by the AP similar to a point coordinator in PCF.
- We refer to this as **centralized UL MU**

Our ideas

- A UL MU MAC Protocol should be
 - Applicable to many scenarios to maximize its effect.
 - Initiated by a participating STA and not the AP.
 - Users that obtain TXOP should be able to send right away regardless of UL MU is used or not.
 - If UL MU is used, users with TXOP don't have to wait for UL transmission timing. It means each users can initiate UL MU data frame transmission without any control from AP.
 - We call this kind of protocol as **Distributed UL MU**.
 - ➢ In contrast, in the case of Centralized UL MU protocol, frame transmission timing is always come from the AP.
 - Minimal overhead
 - Applicable in DCF/EDCA.

Distributed UL MU frame transmission (Example) Scenario 1 : UL MU permitted - Timing Diagram -

Distributed UL MU frame transmission (Example) Backward compatibility

- When any legacy device use RTS, the 11ax AP will always send normal CTS for backward compatibility. Hence, a normal RTS/CTS frame exchange will occur.
- When any legacy device hear a distributed UL MU sequence, it will be as if a normal RTS/CTS frame exchange has occurred.

Summary

	Centralized	Distributed	
Advantages	 "Guarantees" latency. Might have better theoretical performance benefit than distributed. 	 Low overhead Symmetric with current 802.11ac DL MU scheme. 	
Disadvantages	 High overhead Neighbor BSSes operating in the same mode will hinder performance. 	- Effect is dependent on whether users within the same group have the same traffic characteristics.	

New frame type definition

- The function same as 11ac CTS or ACK, but is for a Group.
- G CTS frame (Same control frame Subtype as CTS)

Conclusion and Future Work

- □ We show a UL MU MAC Protocol which has low overhead and easily applicable in frequency domain or spatial domain UL MU.
- □ We plan to show MAC simulation results of the proposed scheme in a future contribution.

References

- [1] "WLAN components (Data Communications and Networking), what-when-how In Depth Tutorials and Information", http://what-when-how.com/data-communications-and-networking/wlan-components-data-communications-and-networking/
- [2] Yaser Pourmohammadi Fallah, Salman Khan, Panos Nasiopoulos, Hussein Alnuweiri, "Hybrid OFDMA/CSMA Based Medium Access Control for Next-Generation Wireless LANs", IEEE Communications Society ICC 2008
- [3] Jinyoung Chun, Wookbong Lee, "Uplink multi-user transmission", 11-13/1388r0, LG Electronics